Incremental Adversarial Domain Adaptation

نویسندگان

  • Markus Wulfmeier
  • Alex Bewley
  • Ingmar Posner
چکیده

Continuous appearance shifts such as changes in weather and lighting conditions can impact the performance of deployed machine learning models. Unsupervised domain adaptation aims to address this challenge, though current approaches do not utilise the continuity of the occurring shifts. Many robotic applications exhibit these conditions and thus facilitate the potential to incrementally adapt a learnt model over minor shifts which integrate to massive differences over time. Our work presents an adversarial approach for lifelong, incremental domain adaptation which benefits from unsupervised alignment to a series of sub-domains which successively diverge from the labelled source domain. We demonstrate on a drivable-path segmentation task that our incremental approach can better handle large appearance changes, e.g. day to night, compared with a prior single alignment step approach. Furthermore, by approximating the marginal feature distribution for the source domain with a generative adversarial network, the deployment module can be rendered fully independent of retaining potentially large amounts of the related source training data for only a minor reduction in performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance Weighted Adversarial Nets for Partial Domain Adaptation

This paper proposes an importance weighted adversarial nets-based method for unsupervised domain adaptation, specific for partial domain adaptation where the target domain has less number of classes compared to the source domain. Previous domain adaptation methods generally assume the identical label spaces, such that reducing the distribution divergence leads to feasible knowledge transfer. Ho...

متن کامل

CatGAN: Coupled Adversarial Transfer for Domain Generation

This paper introduces a Coupled adversarial transfer GAN (CatGAN), an efficient solution to domain alignment. The basic principles of CatGAN focus on the domain generation strategy for adaptation which is motivated by the generative adversarial net (GAN) and the adversarial discriminative domain adaptation (ADDA). CatGAN is structured by shallow multilayer perceptrons (MLPs) for adversarial dom...

متن کامل

CyCADA: Cycle-Consistent Adversarial Domain Adaptation

Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models applied in feature spaces discover domain invariant representations, but are difficult to visualize and sometimes fail to capture pixel-level and low-level domain shifts. Recent work has shown that generative adversarial networks combined with cycle-consistency constraints are surprisingly effec...

متن کامل

Conditional Adversarial Domain Adaptation

Adversarial learning has been successfully embedded into deep networks to learn transferable features for domain adaptation, which reduce distribution discrepancy between the source and target domains and improve generalization performance. Prior domain adversarial adaptation methods could not align complex multimode distributions since the discriminative structures and inter-layer interactions...

متن کامل

Cycada: Cycle-consistent Adversarial Domain Adaptation

Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models applied in feature spaces discover domain invariant representations, but are difficult to visualize and sometimes fail to capture pixel-level and low-level domain shifts. Recent work has shown that generative adversarial networks combined with cycle-consistency constraints are surprisingly effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07436  شماره 

صفحات  -

تاریخ انتشار 2017